STRUCTURE anp FUNCTION

OF THE HORSE'S FOOT

By James R. Rooney, D.V.M.

The structure and function of the
horse’s foot have been the subject of
continuing debate and study by veterinar-
ians, horsemen and farriers since the first
writings on the horse.

Since the anatomy, the structure, of the
foot is reasonably well described in readily
available texts, it will not be redescribed
here. We shall be concerned with function:
how the hoof works.

First, the foot will be defined as the
horny hoof and all structures contained
therein up to the level, approximately, of
the coronary band.

The foot is basically an impulse receptor
designed to absorb, store, and dissipate the
force and energy generated by the weight of
the horse impacting with the ground. What
sort of forces are we talking about? First,
let’s consider the total force exerted on the
leg of the horse in the standing position (the
static case). Assuming that 55% of the
weight is on the forelegs and 45% on the
rearlegs, the two forelegs of a 1000 Ib.
horse will be supporting 550 lbs. while the
two rearlegs will be supporting 450 Ibs. The
precentage figures will vary from horse to
horse depending upon how the horse is
built (the conformation). To find the
percentages for a given animal: stand the
horse on a platform scale and record the
total weight. Next, stand the horse’s
forelegs on the scale and record the weight;
next, stand the rearlegs on the scale and
record the weight. Then:

Weight Carried by Forelegs -+
Total Weight x 100
= Y support of forelegs

Weight Carried by Rearlegs +
Total Weight x 100
= % support of rearlegs

Assuming 55% for a 1000 lb. horse,
each foreleg will be supporting 275 Ibs. and
each rearleg, 225 lbs.

Before moving on to the moving horse
(the dynamic case), we must ask just what
is ““weight”’? Every physical body has mass
and that mass is acted upon by the
acceleration of gravity directed toward the
center of the earth. When we weigh a horse,
we are actually determining the force that
the mass of horse, accelerated by gravity, is
exerting on the scale. Therefore:

F=mxa
where F is force; m is mass; and a is
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acceleration. The acceleration of gravity is
usually symbolized by ‘‘g”’, and g = 23
ft/sec:. Thus, a horse of 1000 lbs. is
actually exerting 1000 ft. Ibs./sec? of force
on the scale:

F=mxa
g =a
F=mxg
F =W
W=mxg

Thus, a 1000 Ib. horse = m x 32 ft/sec?,
and the mass = 31.25.

We can now move on to the horse at the
walk. An approximation in mechanics is
that the dynamic force (the impulse or
impact) will be twice as great as the static
force. A one pound block resting on a table
is exerting one pound of force (1 ft
Ib/sec?). If the block is held just in contact
with the table, but not resting on the table,
and then is suddenly released it will exert
2 ft Ib/sec?, twice the resting or static force.
(Try this with the bathroom scale).

Therefore, the one foreleg, standing
still, is subjected to 275 ft Ib/sec?. As soon
as the horse begins to walk, that force will
be doubled on the moving, impacting leg;
the leg will be subjected to 550 ft 1b/sec? of
force with the other three legs in support.
At the gallop, the lead foreleg, when it is
supporting all the body weight (force) will
be subjected to twice the body weight: 2000
ft Ib/sec?

Let’s follow a horse through the
galloping stride. Say the left hind (LH) foot
impacts first after the flight phase (that
phase when all four feet are off the
ground). The force on LH, then, is 2000 ft
Ib/sec?. When RH impacts, the force will
be shared: 1000 ft Ib/sec? per LH and RH.
LH leaves the ground and RH supports
2000 ft Ib/sec? until LF impacts, forming
the diagonal. RH now supports 45% of
2000 ft 1b or 900 ft Ib/sec?. LF, of course,
supports 55% of 200 ft lbs or 1100 ft
Ib/se22. RH comes off the ground, and LF
supports 2000 ft Ib/sec? until joined by RF:
1000 ft Ib/sec? each. LF leaves the ground,
and RF supports 2000 ft Ib/sec? until it,
too, leaves the ground for the next flight
phase.

Those are all approximate values but do
give an overall, general picture of the total
forces experienced by each leg of the
galloping horse. What about the weight
(the force) of rider and tack? If the rider
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sits in the proper place, over the center of
gravity of the horse, that weight simply
adds to the horse’s weight. Two hundred
pounds of tack and rider on a 1000 Ib.
horse means a 1200 Ib. horserider
“‘system”’

Let’s move on now to a more specific
consideration of the forces applied to the
foot and the lower part of the leg, starting
with the standing horse (the static case).

Without, at this time, explaining just
how it gets there, we’ll deal with that
portion of the force applied to one front
leg, coming down the lower part of the leg.
It is a basic law of mechanics that for every
force in a real physical system there is an
equal and opposite reaction (opposing
force). In Fig. 1, then, the force coming
down the leg (V) must have an equal and
opposite force (V') exerted on the foot by
the ground. In other words, the horse
pushes down on the ground, and the
ground pushes back on the horse. Clearly,
the two forces, V and V’, must meet
somehow, so that they cancel each other: V
- v,

By inspection of the figure the reader
can see that, given a fetlock and coffin
joint, V will cause the pastern to move
down with rotation of both the coffin and
fetlock joints. Clearly, for the horse to
remain standing, this rotation of the joints
must be resisted. While several structural
elements provide the resistance, the most
important is the suspensory ligament (SL).

We must now have recourse to a
mathematical device in order to demon-
strate precisely how the SL resists V In Fig.
2 the SL is shown as the two upper and
lower arrows which are ‘‘vectors”
representing the tensile force exerted by the
SL and its attachments to the bones: the
upper end of the cannon bone and the
upper end of the long pastern bone. (While
the proximal sesamoid bones are import-
ant, we can consider them, for present
purposes, simply as a part of the SL.) It is
both legitimate, and necessary, to move
these two vectors, so that they can be
manipulated more readily. In Fig. 3 then,
we have the two vectors moved away from
the leg and connected, tail to tail. We now
wish to discover the effect of these two
vectors on the fetlock joint. (In fact the
forces acting on the fetlock joint. The
vectors represent the forces.) In order to
find the resultant (the effect or result of the
action of the two forces), we draw two
more lines (the dotted lines) parallel to and
attached to the heads of the two vectors
(Fig. 3). Finally, we draw a diagonal as
shown. This diagonal vector is the
resultant, the actual force exerted on the
fetlock by the SL. We have added one
vector to another and come up with the sum
the resultant, and we have added not only
numbers but also direction.
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Let’s now move that resultant, which
we’ll call Ro, back to the leg. There are now
two vectors operating on the fetlock: V, the
vertical or downward force, and Ro, the
horizontal, SL force. Now we add
vectorially, just as was done above, in order
to discover the resultant of those two forces
(Fig. 4). This new resultant, which we’ll
call, P, runs down the pastern, toward the
ground. Clearly, then, one effect of SL is to
redirect the force, V, along the column of
bones.

Since the pastern joint moves very little,
the pastern (the long and short pastern
bones) can be considered, for present
purposes, a single bone. P, then, travels
down to the ground, through the pastern
and, as already noted, must be opposed by
an equal and opposite ground reaction
force (Fig. 4), P’

You may be anticipating what comes
next. Just what is the effect of the force P
on the hoof and the relationship to P'?
Previously we added vectors in order to
obtain a resultant. Now we are going to
reverse the process and decompose the
resultants in order to find the component
vectors. From Fig. 5 it is apparent that the
force, P, tends to press the hoof into the
ground (V) and to slide it forward (H). The
ground resists by pressing up on the hoof
(V) and pressing parallel to the hoof (H’).
This latter force, H’, is friction. If the hoof
were resting on a slippery, virtually
frictionless, surface such as ice, a banana
peel, it would tend to slide forward.

Up to this point we have been
considering only the static case, the
standing horse. Next, let’s delve just a bit
into dynamics, the more difficult case of
the moving horse. Experimental studies
have given us a quantitative idea of the
relationships of the two component forces,
V and H. In Fig. 6 these forces are shown
during the support phase, from the moment
of impact of the hoof with the ground until
lift-off, when the hoof leaves the ground.
The vertical axis is the amount or quantity
of force, and the horizontal axis is the
successive stages of the support phase.
During the first half of support, the
horizontal force, H, is directed forward,
the hoof tending to slide forward. During
the second half of support, the hoof is
pushing backward against the ground and,
thus, the curve goes below the line. Also,
you can see that the vertical force, V,
increases to midsupport and then decreases
until lift-off.

In Fig. 7, V and H are represented, once
again, as vectors. Although it hasn’t been
mentioned before, the length of the force
vector is a measure of the amount or
quantity of the force. Thus, the vector tells
us both the direction of the force and its
amount. At A in Fig. 7, then, H is rather
large and V rather small; the resultant, P, is
is shown. P is essentially parallel to the

pastern and to the hoof wall at the toe. As
support progresses, H decreases and V
increases (Fig. 6). B, then, the resultant has
changed direction. At C, midsupport,
vertical cannon bone, there is no H. This is
the point in Fig. 6 where H goes through
zero, changing from sliding forward to
pushing back. The total force at
midsupport, therefore, is V, as shown (P =
V). As H reappears, pushing back, we have
the leg in D, and P is shown. Finally, at E
we have the vector situation just before
lift-off.

To summarize, then: during the support
phase, the hoof on the ground, the
resultant force exerted on the foot by the
horse changes direction continuously.

The actual ‘“‘meeting’’ of the P and P’
forces occurs in the laminae of the hoof
wall. These laminae, as indicated in Fig. 8
are oriented parallel to the hoof wall at the
toe and, for reasons we cannot get into
here, this orientation is the ‘‘best possible”’
for dealing with this ‘‘meeting of the
forces’” At impact, then, P and P’ are in
optimum relationship to each other and to
the laminae which must deal with them.
That is, P and P’, and the laminae are all in
parallel. As P rotates, however, the hoof
itself i not rotating, the laminae are no
longer parallel to P and P’, and shearing
forces develop in the laminae. It would
seem clear that the hoof should normally
rotate in order to maintain this normal,
mechanically efficient parallelism. That it
does not is a function of horseshoes and
hard working surfaces. But that is another
story which cannot be developed here.

This has been a rather quick overview of
the forces involved in the horse’s foot.
Obviously, there is much, much more.
Have you ever given consideration, for
example, to the different shape of the fore
and rear hooves? Why is the inside wall
steeper, more nearly vertical on the inside
than on the outside? These questions can be
answered by consideration of the mechan-
ics of the forces applied to the foot. We’ll

look into that next time. Y
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